110. Strojové učenie v medicíne: Nádejné riešenia a obrovské výzvy (I. časť)
V ďalšej epizóde Pravidelnej dávky si s Mirom povieme niečo o strojovom učení, jeho výhodách a o jeho využití v medicíne. Je to prvá zo série zameranej na strojové učenie a umelú inteligenciu v medicíne.
Referencie:
- [1] Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way, G. P., … Greene, C. S. (2018). Opportunities and obstacles for deep learning in biology and medicine. Journal of the Royal Society Interface, 15(141). https://doi.org/10.1098/rsif.2017.0387
- [2] Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C., & Faisal, A. A. (2018). The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nature Medicine, 24(11), 1716–1720. https://doi.org/10.1038/s41591-018-0213-5
- [3] Rigby, M. J. (2019, February 1). Ethical dimensions of using artificial intelligence in health care. AMA Journal of Ethics. American Medical Association. https://doi.org/10.1001/amajethics.2019.121
- [4] Yu, K. H., & Kohane, I. S. (2019, March 1). Framing the challenges of artificial intelligence in medicine. BMJ Quality and Safety. BMJ Publishing Group. https://doi.org/10.1136/bmjqs-2018-008551
- [5] Poplin, R., Varadarajan, A. V., Blumer, K., Liu, Y., McConnell, M. V., Corrado, G. S., … Webster, D. R. (2018). Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering, 2(3), 158–164. https://doi.org/10.1038/s41551-018-0195-0
- [6] Day, N., Hemmaplardh, A., Thurman, R. E., Stamatoyannopoulos, J. A., & Noble, W. S. (2007). Unsupervised segmentation of continuous genomic data. Bioinformatics, 23(11), 1424–1426. https://doi.org/10.1093/bioinformatics/btm096
***
Dobré veci potrebujú svoj čas. Pomohla ti táto dávka zamyslieť sa nad niečím zmysluplným? Podpor tvoj obľúbený podcast sumou 1€, 5€ alebo 10€ (trvalý príkaz je topka!) na SK1283605207004206791985. Ďakujeme! Viac info o podpore na pravidelnadavka.sk/#chcem-podporit